
GENIE Validation
at Fermilab

Gabriel N. Perdue
Fermilab

Gabriel N. Perdue, Fermilab Neutrino Physics for Simulations

GENIE
• Generates Events for Neutrino Interaction Experiments.

• http://genie.hepforge.org

• Well-engineered C++ software framework built on sound OO-
principles and design patterns. (The Gang of Four is
omnipresent.)

• Propagates a flux of neutrinos (specified by function,
histogram, or ntuple) through a geometry (Geant4-
compatibility is an option) and simulates the initial
interaction and propagation of hard vertex products
through the nuclear medium. Geant4 takes over when
particles leave the nucleus.

• ROOT provides many core utilities. GENIE also heavily
leverages other HEP and FOS software - LHAPDF, GSL,
Pythia, log4cpp, etc.

2

Andreopoulos, C. and Bell, A. and Bhattacharya, D. and Cavanna, F. and Dobson, J. and others.
"The GENIE Neutrino Monte Carlo Generator". Nucl.Instrum.Meth. A614. 87-104. 2010.

http://genie.hepforge.org

Gabriel N. Perdue, Fermilab Neutrino Physics for Simulations

GENIE
• Created to be the “universal event generator” (covering low

energy reactor experiments, solar, supernova, meson decay at
rest, accelerator-based experiments, and all the way through
PeV+ cosmic experiments) requested during the NuInt conference
series.

• It is the most widely-adopted neutrino event generator.
Competitors are brittle FORTRAN projects or lack comprehensive
features like a flux driver, highly flexible configuration, re-
weighting machinery, geometry drivers, charged lepton and
hadron interaction drivers, etc.

• Good separation of different levels of abstraction - event
handling is decoupled from physics routines, physics routines
use visitor and chain of responsibility patterns to allow for
fairly arbitrary algorithm stacks.

• Cross-sections are pre-computed and stored in configuration XML
(ROOT and XML are both heavily used to store computation
results, physics output, and configuration options).

3

Gabriel N. Perdue, Fermilab Neutrino Physics for Simulations4

> ./cloc-1.60.pl R-2_8_0/
 3285 text files.
 3200 unique files.
 7197 files ignored.

http://cloc.sourceforge.net v 1.60 T=113.14 s (11.3 files/s, 4119.1 lines/s)
--
Language files blank comment code
--
C++ 525 30478 37587 176349
XML 125 21895 2144 147176
C/C++ Header 504 9052 8118 22282
Perl 28 456 1469 3620
make 47 514 485 1651
Bourne Shell 34 157 334 1059
Bourne Again Shell 2 145 127 727
SQL 12 37 0 117
ASP.Net 1 0 0 39
--
SUM: 1278 62734 50264 353020
--

There is a lot of configuration XML and experimental
data packaged for the validation framework.

http://cloc.sourceforge.net

Gabriel N. Perdue, Fermilab Neutrino Physics for Simulations

Challenges

• GENIE’s framework is good, but the physics
models implemented lag the state of the art.

• Limited manpower (1.5 FTE of active labor as
of Summer 2013 when FNAL joined) has meant
slow release schedules and new feature
implementation.

• We must be able to issue releases faster.

• We should be able to produce experiment /
target / energy-regime specific tunes.

5

Gabriel N. Perdue, Fermilab Neutrino Physics for Simulations

Our Goals
• C. Andreopoulos (GENIE spokesperson) articulated a clear

purpose for GENIE validation:

• Reduce cycle time.

• Cycle time is the time required to implement a one-line
bug-fix and prove there were no unintended consequences
anywhere in the software.

• The GENIE collaboration takes total package integrity VERY
seriously - the validation process is the gatekeeper to
issue a release.

• This is why the validation is important. Fast, stable
validation means a rapid release cycle becomes possible.

• GENIE has a good validation framework for a HEP software
project, but cycle time is currently ~2 months.

• Our goal is one week.

6

Gabriel N. Perdue, Fermilab Neutrino Physics for Simulations

Basic Validation
• One week is a practical lower bound - it takes long enough to create the

required samples and enough space to store them that nightly validation is
not practical (although nightly builds and time-scale appropriate
integration tests are required). The process:

• Check out the code and build it. Requires a couple of hours and less
than one GB of space.

• Compute total cross section splines (large files, hundreds of MB per
target (free nucleons, carbon, argon, etc.)). Requires ~dozen hours per
target and 10's of GB of space (total). These are input for the
following step.

• Compute validation sample, e.g. muon neutrinos over the NuMI flux to
replicate final state muon energies and angles for Deep Inelastic
Scattering events in MINOS. Samples need to have tens of thousands of
events so run long (~dozen hours) and take significant space (several
GB per app, possibly many dozens of apps).

• Compare the validation sample and experimental data. Run GENIE apps
(compiled C++) over the outputs from the previous step. These are
typically much faster (less than an hour) and produce analysis-style
histograms (but may produce many of them, so they could easily require
hundreds of MB per app).

7

Gabriel N. Perdue, Fermilab Neutrino Physics for Simulations

Validation
• Many levels:

• Compile. Does the code build? Where does the build fail?

• Run one event. Can the program run without crashing?

• Run one million events. Is the program robust across the whole phase
space?

• Physically sensible. Is charge conserved? Momentum? Unitarity?

• Agreement with experimental data. Do the predictions of the generator
agree with experimental data within uncertainties? Are available
experimental uncertainties accounted for correctly in figures of merit?

• Confidence of predictions. Are uncertainty bands attached to predictions
of the generator where appropriate?

• Usability. Can experimenters quickly understand the differences between
releases and understand the regions of validity for the generator?

• We need to be able to address every level eventually (although not all
applications will access every level).

8

Gabriel N. Perdue, Fermilab Neutrino Physics for Simulations

Validation

• Two components:

• Validation applications: often specific to
experimental results (to account for the different
sets of uncertainties provided), but sometimes
general. These programs compare predictions of the
generator to data.

• The validation framework: infrastructure to
automate the production of MC samples and
uncertainties, run the applications, store and
summarize the results, present summary statistics
and histograms. We would like to be able to run the
validation weekly using an automated framework. It
should present easily consumable summaries and
detailed plot books for a thorough reference.

9

Gabriel N. Perdue, Fermilab Neutrino Physics for Simulations

Important Caveats

• This presentation is meant to express a set of
ideas that should spark discussion and debate in
the formation of requirements, timelines, and
milestones.

• The "official" definitions should be specified
in the FNAL-GENIE MOU and subsidiary documents.

• This presentation will focus on the validation
framework, but we should not fail to give the
appropriate emphasis to the validation
applications. Physicist judgement is required to
make progress on the validation applications and
GENIE leadership has stressed their importance in
a fully functioning validation.

10

Gabriel N. Perdue, Fermilab Neutrino Physics for Simulations

Validation
Applications

• Active work at Fermilab:

• J. Yarba on the hadronization package.

• There are many existing apps. We need to be
able to re-use as many of these as possible,
but we will probably need to do some
refactoring / rewriting in some cases.

• Philosophy: think carefully about input and
output requirements and make sure we can
develop a uniform way of specifying required
input, required auxiliary files, how to
handle output, etc.

11

Gabriel N. Perdue, Fermilab Neutrino Physics for Simulations

Validation
Applications

• The current set is reasonably comprehensive but some pieces
are missing:

• Re-weighting (some pieces are available, but nothing
coherent)

• Flux driver

• Geometry

• Many recent "flagship" results (e.g., MiniBooNE double-
differential QE results, MINERvA results, etc.) that are
important to the community lack comparisons.

• Good interface design means we can and should support work on
applications concurrent with framework development.

• We should especially aim to provide clear guidance to
developers working on new features now - how do they build
validation into the model they are working on now?

12

Gabriel N. Perdue, Fermilab Neutrino Physics for Simulations

Validation Framework

• We will build a framework that lives at
Fermilab and attempts to reuse as many
existing software products as possible.

• New components should be as general as
possible and well-focused ("Unix
philosophy"). The idea is to create products
usable across the lab that can fit into
different use cases.

• Philosophy: get the minimum viable framework
running quickly, and add features
incrementally.

13

Gabriel N. Perdue, Fermilab Neutrino Physics for Simulations

Institutional
Concerns

• Currently, most of the validation runs on the batch system at
Rutherford-Appleton Laboratory.

• Different parts run at the University of Pittsburgh.

• GENIE is a universal generator and is used by non-FNAL
experiments. It is a requirement that these collaborations be
able to access validation results.

• We additionally require a highly factorable system so it is
portable with the minimum reasonable amount of effort. Some
pieces will invariably be institution specific (e.g., dCache/
Enstore at Fermilab), but the framework must be designed such
that with minimum reasonable effort, different components of
the system may be swapped in and out as needed at different
institutions.

• Individual validation applications should always be executable
"by hand" in an interactive environment for supported operating
systems.

14

Gabriel N. Perdue, Fermilab Neutrino Physics for Simulations

Basic Plan

15

Specify
Requirements

Design Minimum
Viable Product

Implement MVP
Use lessons from
the MVP to design
the Full Product.

Implement the
Full Product.

Gabriel N. Perdue, Fermilab Neutrino Physics for Simulations16

Build
Check out one branch

of the code.

Build the code on SLF.

Report errors to a
webpage.

Build multiple
branches.
Email summaries to

watchers.

Generate Generate Cross Section Splines
Generate App Specific
Events for One App

Generate App Specific
Events for Many Apps

Check 1 Search logs for errors.

Comprehensive tests
for conservation laws.

Check 2 Run one validation app.

Run all validation apps.

Monitor resource usage:
memory, CPU, etc.

Summary Aggregate validation
results for one app.

Aggregate results for
all apps.

Produce high level
summaries.

Compare to reference
releases.

Compute uncertainties on
the predictions.

MVPStep Full Product

Build the code on
Ubuntu, OSX, etc.

Gabriel N. Perdue, Fermilab Neutrino Physics for Simulations17

Requirements:
Hardware

• Computing resources to build the code and
store ~10 releases (~several reference
releases and one-two months of weekly
builds).

• Re-use third-party software when possible.

• Storage for ~10 validation cycles. Assume ~1
TB per cycle.

• Web server for error reporting. Ideally
serve a history of validation reports.

• Grid allocation to run O(1000) jobs per
week.

Gabriel N. Perdue, Fermilab Neutrino Physics for Simulations18

Requirements:
Hardware

• We would also like to secure interactive
nodes for development purposes.

• The needs here are modest (perhaps two
interactive nodes), but we would want
sufficient computing power to serve the core
group and GENIE developers in the FNAL Users
community.

• For example, some users would want to work
with release candidate snapshots built
through the validation process and it
would help with reporting and tracking if
we had a common environment for
development at the lab.

Gabriel N. Perdue, Fermilab Neutrino Physics for Simulations19

Requirements:
Hardware

• We would also like to secure one special
dedicated node for performance profiling.

• Memory usage can be usefully monitored on a
generic Grid node, but careful performance
optimization requires a "quiet", stable
machine.

• Because this node would not be in constant
use, it would make sense to share it with a
small number of other groups with similar
needs at the lab - there is a lot of synergy
and personnel overlap with Geant, for
example.

Gabriel N. Perdue, Fermilab Neutrino Physics for Simulations

Performance Validation
Hardware Requirements

• Server (1)

• Build software and control performance
measurements (batch system)

• Test and maintain performance tools

• Analyze performance data

• Publish results (web server)

• Shared disk

• We may be able to fill some of these requirements
with the general validation framework and hardware.

20

Gabriel N. Perdue, Fermilab Neutrino Physics for Simulations

Performance Validation
Hardware Requirements

• Workers (n):

• Private network and minimal system cron jobs

• m-cores for multi-threaded apps

• (n x m) > O(100)

• Variety of architectures (Intel, AMD)

• Local disk and Memory

21

Gabriel N. Perdue, Fermilab Neutrino Physics for Simulations

Performance Validation
Hardware Requirements

• Storage

• Store outputs

• Bookkeeping and temporary archive

• Backup

• We may be able to fill some of these requirements
with the general validation framework and hardware.

22

Gabriel N. Perdue, Fermilab Neutrino Physics for Simulations

Performance Validation
Hardware Requirements

• Coprocessors

• GPU

• Xeon Phi (MIC)

• Performance Tools

• Maintenance

• Security

• Minimal upgrade (patches on a controlled
schedule)

• Dedicated admin

23

Gabriel N. Perdue, Fermilab Neutrino Physics for Simulations

Requirements:
Software

• Scheduler: run each piece of the framework, monitor results at the
proceed/stop level, notify principals if there are problems / success.

• Build system: check out specified branches (e.g., "integration") of
the code, run a build script ("lamp" project, or other).

• The new continuous integration / build service being planned looks
extremely promising for this. It may even handle scheduler tasks.

• Job submission to use Fermigrid CPU.

• Data management: store / retrieve cross section splines (O(10 - 100
GB)), retrieve experimental data sets (< 1 GB, but many), store /
retrieve validation app output (< 1 GB, but many). Archival storage
can bundle the entire output into one tar-ball (hundreds of GB), with
high-level summary plots (< 10 MB?) and detailed plot book (hundreds
of MB) ideally simply accessible.

• Copying H. Wentzel's Geant4 validation repository web app to
display current and historical plots would be a good idea.

24

Gabriel N. Perdue, Fermilab Neutrino Physics for Simulations

Schedule
• Aim for the minimum viable product (MVP) first:

• Secure appropriate hardware resources. (The overall effort will scale
with this factor - pieces may be delayed if we need to first secure
funding, etc.)

• Checkout and build only one branch (trunk), and report errors to a
webpage. Okay to overwrite the existing installation (but "rolling"
directories would be better).

• Generate splines and samples appropriate for one application.

• Run the application and analyze the output produce comparison plots.

• Add other features (more comprehensive sanity checks, resource
monitoring, high-level summaries, use reweighting to compute uncertainty
bands, creation of flexible tunes, etc.) once we have something running
weekly. (But we should not design so these features are hard /
impossible.)

• Iterate to add additional apps interspersed with other features.

25

Gabriel N. Perdue, Fermilab Neutrino Physics for Simulations

Schedule
• Times are wall-clock times that reflect goals.

• Aim for the minimum viable product first (6-week project):

• Secure appropriate hardware resources. One-week project (assuming
resources are available).

• Checkout and build only one branch (trunk), and report errors. One-
week project.

• Generate splines and samples appropriate for one application. Two-week
project.

• Run the application and analyze the output produce comparison plots.
Two-week project.

• Add other features. 6-month project. We should begin to prioritize the
task list once the MVP is finished.

• Iterate to add additional apps. 6-months to 1-year to integrate all
existing applications (including current core apps plus Pittsburgh apps).
May proceed concurrently with other feature expansion.

26

Gabriel N. Perdue, Fermilab Neutrino Physics for Simulations

Key Drivers
• Hardware resources.

• What is available now? How long will it take to secure new resources if
required? The expectation is that it may take some time (months) to secure
resources - computers and disk don't appear through magic. We need to scale
this effort to available resources as they come online.

• Personnel.

• Validation apps: J. Yarba, R. Hatcher (?), M. Zielinski (?), other
developers at Fermilab.

• Framework: G. Perdue, other developers at Fermilab.

• Note: I write "good code for a physicist." The framework could use
architecture and implementation advice and assistance from computing
professionals at the lab. At the minimum I will need consulting services
from lab specialists on existing products. The validation framework should
utilize as many existing lab products as possible and new products should be
application-neutral to encourage re-usability.

• We could probably use ~0.25 FTE for three months (maybe a lower FTE number,
but the needs would be "bursty").

27

Gabriel N. Perdue, Fermilab Neutrino Physics for Simulations

How will this be
tracked?

• We plan on using Redmine.

• The initial plan will be to plan and divide
responsibilities, connecting milestones with
individuals using a Gantt chart.

• We will also use issue tracking on Redmine
to organize new ideas as they occur and to
report and handle bugs.

28

Gabriel N. Perdue, Fermilab Neutrino Physics for Simulations

Recap

• Our goal is to reduce the GENIE validation cycle
time to one week.

• We need a grid allocation sufficient to run
O(1000) jobs per week and 10 TB of storage
(rolling usage).

• We need a way to serve the results of the
validation suite and to display plots (with
official releases publicly archived).

• We need some software consulting expertise on
using lab software products (new build service,
job_sub, etc.) and some help producing new,
general use products at the level of 0.25 FTE for
three months.

29

